

Section 1. <u>Filled-in Kill Sheet Exercises - Gauge Problem Actions.</u>

Gauge Problem Exercises are constructed from a completed kill sheet 'filled-in' with all relevant volume and pressure calculations.

Each question is based on the strokes, pump rate, drill pipe and casing gauge readings at a specific point in time during a well kill operation. Any one or a combination of these readings could indicate the action required. Options are shown in the multiple-choice answers.

The casing and/or drill pipe pressures will only be relevant to the action if -

- The casing and/or drill pipe pressures given in the question are below the expected pressures, or
- The casing and/or drill pipe pressures given in the question are 70 psi or more above the expected pressures.

Section 2. <u>Calculation Formula.</u>

Abbreviations used in this document

bbl	=	Barrels (US)
bbl/ft	=	Barrels (US) per foot
bbl/min	=	Barrels (US) per minute
bbl/stroke	=	Barrels (US) per stroke
BHP	=	Bottom Hole Pressure
BOP	=	Blowout Preventer
ft	=	Feet
ft/hr	=	Feet per hour
ft/min	=	Feet per minute
lb/bbl	=	Pounds per barrel
LOT	=	Leak-off Test
MAASP	=	Maximum Allowable Annular Surface Pressure
ppg	=	Pounds per gallon
psi	=	Pounds per square inch
psi/ft	=	Pounds per square inch per foot
psi/hr	=	Pounds per square inch per hour
SICP	=	Shut in Casing Pressure
SIDPP	=	Shut in Drill Pipe Pressure
SPM	=	Strokes per minute
TVD	=	True Vertical Depth
0.052	=	Constant factor

1. HYDROSTATIC PRESSURE (psi)

Mud Density (ppg) x 0.052 x TVD (ft)

2. PRESSURE GRADIENT (psi/ft)

Mud Density (ppg) x 0.052

August 2017	EX-0035	Version 1.0	Page 1 of 4	

3. DRILLING MUD DENSITY (ppg)

or

Pressure (psi)
TVD (ft) x 0.052

4. FORMATION PORE PRESSURE (psi)

Hydrostatic Pressure in Drill String (psi) + SIDPP (psi)

5. PUMP OUTPUT (bbl/min)

Pump Displacement (bbl/stroke) x Pump Rate (SPM)

6. ANNULAR VELOCITY (ft/min)

Pump Output (bbl/min)
Annular Capacity (bbl/ft)

7. EQUIVALENT CIRCULATING DENSITY (ppg)

Or

$$\frac{\text{Annular Pressure Loss (psi)}}{\text{TVD (ft)} \times 0.052} + \text{Mud Density (ppg)}$$

8. MUD DENSITY WITH TRIP MARGIN INCLUDED (ppg)

Or

$$\frac{\text{Safety Margin (psi)}}{\text{TVD (ft)} \times 0.052}$$
 + Mud Density (ppg)

9. NEW PUMP PRESSURE (psi) WITH NEW PUMP RATE approximate

Old Pump Pressure (psi)
$$\times \left(\frac{\text{New Pump Rate (SPM)}}{\text{Old Pump Rate (SPM)}}\right)^2$$

10. NEW PUMP PRESSURE (psi) WITH NEW MUD DENSITY approximate

11. MAXIMUM ALLOWABLE MUD DENSITY (ppg)

or

12. MAASP (psi)

[Maximum Allowable Mud Density (ppg) - Current Mud Density (ppg)] x 0.052 x Shoe TVD (ft)

13. KILL MUD DENSITY (ppg)

or

14. INITIAL CIRCULATING PRESSURE (psi)

Kill Rate Circulating Pressure (psi) + SIDPP (psi)

15. FINAL CIRCULATING PRESSURE (psi)

16. BARYTE REQUIRED TO INCREASE DRILLING MUD DENSITY (Ib/bbl)

17. GAS MIGRATION RATE (ft/hr)

Rate of Increase in Surface Pressure (psi/hr) ÷ Drilling Mud Density (ppg) ÷ 0.052

or

 $\frac{\text{Rate of Increase in Surface Pressure (psi/hr)}}{\text{Drilling Mud Density (ppg)} \times 0.052}$

18. GAS LAWS

$$P_1 \times V_1 = P_2 \times V_2$$
 $P_2 = \frac{P_1 \times V_1}{V_2}$ $V_2 = \frac{P_1 \times V_1}{P_2}$

19. PRESSURE DROP PER FOOT TRIPPING DRY PIPE (psi/ft)

Drilling Mud Density (ppg) × 0.052 × Metal Displacement (bbl/ft)

Riser or Casing Capacity (bbl/ft) - Metal Displacement (bbl/ft)

20. PRESSURE DROP PER FOOT TRIPPING WET PIPE (psi/ft)

Drilling Mud Density (ppg) x 0.052 x Closed End Displacement (bbl/ft)

Riser or Casing Capacity (bbl/ft) - Closed End Displacement (bbl/ft)

21. LEVEL DROP PULLING REMAINING COLLARS OUT OF HOLE DRY (ft)

Length of Collars (ft) x Metal Displacement (bbl/ft)

Riser or Casing Capacity (bbl/ft)

August 2017	EX-0035	Version 1.0	Page 3 of 4

22. LEVEL DROP PULLING REMAINING COLLARS OUT OF HOLE WET (ft)

Length of Collars (ft) x Closed End Displacement (bbl/ft)

Riser or Casing Capacity (bbl/ft)

23. LENGTH OF TUBULARS TO PULL DRY BEFORE OVERBALANCE IS LOST (ft)

Overbalance (psi) × [Riser or Casing Capacity (bbl/ft) - Metal Displacement (bbl/ft)]

Mud Gradient (psi/ft) × Metal Displacement (bbl/ft)

24. LENGTH OF TUBULARS TO PULL WET BEFORE OVERBALANCE IS LOST (ft)

Overbalance (psi)x [Riser or Casing Capacity (bbl/ft)- Closed End Displacement (bbl/ft)]

Mud Gradient (psi/ft) x Closed End Displacement (bbl/ft)

25. VOLUME TO BLEED OFF TO RESTORE BHP TO FORMATION PRESSURE (bbl)

Increase in Surface Pressure (psi) × Influx Volume (bbl)
Formation Pressure (psi) - Increase in Surface Pressure (psi)

26. SLUG VOLUME (bbl) FOR A GIVEN LENGTH OF DRY PIPE

Length of Dry Pipe (ft) x Pipe Capacity (bbl/ft) x Drilling Mud Density (ppg)

Slug Density (ppg) - Drilling Mud Density (ppg)

27. PIT GAIN DUE TO SLUG U-TUBING (bbl)

Slug Volume (bbl)
$$\times \left(\frac{\text{Slug Density (ppg)}}{\text{Drilling Mud Density (ppg)}} - 1 \right)$$

28. RISER MARGIN (ppg)

 $\frac{[Air Gap (ft) + Water Depth (ft)] \times Mud Density (ppg) - [Water Depth (ft) \times Sea Water Density (ppg)]}{TVD (ft) - Air Gap (ft) - Water Depth (ft)}$

29. HYDROSTATIC PRESSURE LOSS IF CASING FLOAT FAILS (psi)

Mud Density (ppg) x 0.052 x Casing Capacity (bbl/ft) x Unfilled Casing Height (ft)

Casing Capacity (bbl/ft) + Annular Capacity (bbl/ft)